Curvature

1. Consider a path in vector form $r(t)=\langle x(t), y(t), z(t)\rangle$:
(a) Write the equation for unit tangent vector $T(t)$
(b) Write the equation for curvature $\kappa(s)$
(c) Write the equation for curvature that uses cross product
2. Compute $\kappa(t)$ of the following:
(a) $r(t)=\left\langle 1, e^{t}, t\right\rangle$
(b) $r(t)=\langle 4 \cos (t), t, 4 \sin (t)\rangle$
(c) $y=t^{4}$, at $t=2$

3. Normal Vectors

(a) In terms of $T(t)$, write the formula for unit normal vector.
(b) Find the normal vectors to $r(t)=\langle t, \cos (t)\rangle$ at $t=\frac{\pi}{4}$ and $t=\frac{3 \pi}{4}$.

Limits of multivariable functions

1. Compute the following limits (they all exist):

$$
\begin{gathered}
\lim _{(x, y) \rightarrow(1,2)}\left(x^{2}+y\right) \\
\lim _{(x, y) \rightarrow(0,0)} \frac{x}{y} \\
\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{2}}
\end{gathered}
$$

2. Compute the following partial derivatives
(a) $\frac{\delta}{\delta x} \frac{x y}{y^{2}+1}$
(b) $\frac{\delta}{\delta x} \frac{y^{2}}{y^{2}+1}$
(c) $\frac{\delta}{\delta x} \frac{\delta}{\delta y} \frac{x}{y}$
(d) $\frac{\delta}{\delta x} x^{x}$
3. Linearization
(a) Write the linear function for the linearization, $L(x, y)$, of $f(x, y)$ at (a, b)
(b) Let $f(x, y)=x^{2} y^{3}$. Find the linearization of f at $(a, b)=(2,1)$
(c) Use (b) to estimate $f(2.1,1.1)$.
4. Write the equation of the tangent plane to $z=f(x, y)$ at (a, b).
5. Find the equation of the tangent plane at the given point.
(a) $z=x^{2} y+x y^{3},(2,1,6)$
(b) $f(x, y)=e^{x} \ln (y),(0,1)$
